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The behaviour of a centered finite volume scheme for the isoenergetic Euler equations in 
two space dimensions is studied by numerical differentiation and approximate eigensystem 
analysis. The entire semidiscrete approximation including boundary conditions is formulated 
as a large system of ODES, which are linearized by numerically approximating the Frechbt 
derivative. An approximate eigensystem procedure that only needs the Frechet derivative is 
used to extract the least damped eigenmodes. The overall method has been applied to the case 
of transonic flow past an airfoil and has revealed that the most persistent transient modes are 
highly structured and are associated with eigenvalues of small modulus. Furthermore, they 
appear to be centered around the shock region, the stagnation region and the trailing 
edge/wake region of the airfoil. The beneficial effect of local time-step scaling and artificial 
dissipation is also demonstrated by the method. 0 1985 Academic Press, Inc. 

1. INTR~OUCTI~N 

There is currently much activity in the development of a numerical method whose 
time iterations converge rapidly to the steady state of the compressible Euler 
equations which govern transonic flow. Recent years have seen the truly phenomenal 
success that the multigrid method has brought to the solution of elliptic equations, 
but despite a number of attempts to use it for the hyperbolic Euler equations no 
outstanding success has been reported yet. A substantial theory has arisen that 
explains why the method is so successful on elliptic systems but has not developed far 
enough to give us a clear understanding of its impotency with multidimensional 
hyperbolic systems. One lead towards a credible explanation focusses on the decom- 
position of the transient error that remains after application of the smoothing 
operator in the fine grid [ 11. If the error is not sufficiently smooth, it is thought that 
the conventional multigrid method will not be effective. The general suspicion is that 
the persistent error modes which spring from eigenvalues of low modulus probably 
contain high spatial frequencies. Our own previous work [2] with a projection 
method, which is closely related to the multigrid concept, is a good example; during 
the early part of the convergence process our method had some effect in reducing the 
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residual error, but as the steady state was approached it ceased to act on the 
remaining error. Such findings beg for analysis to help us understand the behaviour 
of the equations we are trying to solve. 

Any theory with which to study the problem must necessarily be based on a 
locally linear analysis of the discretized Euler equations, but we deem it unwise to 
make further simplifications in the equations or in the number of spatial dimensions, 
so we treat them in their entirety. The discrete model that we choose to study is the 
centered finite volume scheme in two-space dimensions, which is also the model that 
we used in our previous attempt at multigrid by projection [2]. Two different types of 
dissipation are used, a nonlinear (solution-dependent) dissipation acting primarily in 
regions with rapid variation and a linear dissipation to damp spurious solutions. The 
particular flow case used for this analysis is the transonic flow about an airfoil, so we 
apply absorbing boundary conditions at the outer boundary. We prefer to formulate 
the scheme as being continuous in time and discrete in space, i.e., a semidiscrete 
approximation, and the time integration is then approximated by a multi-stage 
predictor-corrector type of scheme. 

Viewing the complete semidiscrete approximation to the Euler equations as a large 
system of first-order ODES, it is evident that a local linearization of these equations 
gives us a large linear system whose eigenvalues and eigenvectors determine the local 
time evolution of the system. If the system is dissipative and converges towards a 
unique steady solution, it is also clear that it is the properties of the linearized system 
that determine the asymptotic rate of convergence. 

Clearly the analysis of such a large and complicated linear system cannot be 
accomplished by analytic means. Lomax [ 11, however, has advanced the analysis 
significantly by using the computer to calculate numerically the eigenvalues of the 
matrix that he formulated analytically from a one-dimensional system. His approach 
relies on standard eigenvalue-computing routines and is limited necessarily to one- 
dimensional systems since these routines are applicable for matrices up to at most 
order 200. 

The purpose of this paper is to advance this type of eigensystem analysis by 
computer a step beyond what Lomax did in two particular aspects. Rather than form 
the matrix of the system analytically by hand, which is easy to do at interior points 
of the domain but very tedious at boundaries and for nonlinear dissipation terms, we 
use the computer to linearize our system by numerically approximating the so-called 
Frechet derivative. The second novel feature of this paper is the approximation 
technique we use to compute eigenvalues and eigenvectors of large nonsymmetric 
matrices, which enables us to study the Euler equations in two-space dimensions 
without compromise. This eigenvalue approximation technique was originally 
developed to investigate the effects of mesh singularities on finite difference schemes 
for hyperbolic equations [3], but turned out to be ideally suited for this application 
also. 

We demonstrate the power of this analysis procedure first by showing how the 
well-known technique of scaling the equations by the local time-step [4] produces a 
much improved conditioning of the system. A second investigation shows the 
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unstable behaviour of the equations without the addition of any artificial viscosity 
and also the stabilizing effect of first only nonlinear dissipation and then a 
combination of nonlinear and linear dissipation. But the main goal of our analysis is 
to unveil the nature and character of the persistent transient modes that determine the 
asymptotic convergence to steady state. Our findings on three successive meshes, a 
coarse (32 x 7) mesh, a medium (64 x 14) mesh and a fine (128 x 28) O-type mesh 
show that the most persistent modes are nonspurious in the sense that they seem to 
approximate some physical properties of the flow and furthermore they are associated 
with eigenvalues of very small modulus. What is striking about these modes, unlike 
those found in elliptic problems, is their complex structure, a feature that would call 
into question the ability of any conventional multigrid method to work effectively on 
them. This structure is centered around the shock region, the stagnation region and 
the trailing edge/wake region of the airfoil. Further details of the analysis method and 
a discussion of our findings are elaborated upon in the following paragraphs. 

2. METHOD OF ANALYSIS 

2.1. Linearization 

The large system of ODES that is obtained when semidiscretizing the Euler 
equations in two-space dimensions, can in principle be linearized analytically, but in 
practice this is very difficult due to the complicated boundary conditions (of 
absorbing type) and the use of nonlinear artificial dissipation. Since we do not want 
to make any more simplifications than the linearization, we choose to differentiate the 
system numerically. For a given system defined by 

ut =f(U) (1) 
where u = [ui ,..., u,lT and f = [f,,...,fnlT, we can perturb the argument off by an 
arbitrary vector d = [d, ,..., d,]’ and thereby obtain the Frechtt derivative off as the 
limit 

Fz + (f(u + cd) -f(u)) = s . d. 

It is evident that (2) can be used to approximate (df/du) . d numerically by 
choosing a small but nonzero value of E. However, a better approximation is obtained 
by central differences as in the second-order accurate scheme 

f - d cs $ (f(u + cd) -f(u - cd)) 

or as in the fourth-order accurate scheme 

df d 
-iiT’ 

z & (-f(u + 2&d) + 8f(u + cd) - 8f(u - Ed) +f(u - 2&d)). (4) 
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As in all numerical differentiation schemes, the choice of E should be such that a 
reasonable balance between truncation error and roundoff error is obtained. In our 
case, extensive experimenting and checking led us to choose the fourth-order accurate 
scheme (4) implemented in double precision and E such that )] sd]j/]j u]/ = 0.001 (using 
the L, norm ]]u(]* = u’u). 

In principle, the numerical differentiation schemes (2), (3), (4) can be used to 
compute the complete Jacobian matrix dfldu by setting the perturbation vector to 

dk = (0 )...) 0, 1, 0 )...) O)T 

T 
kth element 

(5) 

and computing the kth column of df/du by 

kth column of df = df a’ 
du du’k 

for k = l,..., n. However, considering that the systems we want to analyze have of the 
order of lo3 to lo4 variables, it is clear that the computation and storage of the 
complete matrix df/du is not practical. Furthermore, the use of standard numerical 
eigenvalue algorithms to compute the complete spectrum of df/du is also out of the 
question for such large systems. We are therefore forced to use a method that is 
capable of extracting a subset of the total spectrum and that only needs the Frechet 
derivative df/du a d for arbitrary vectors d to accomplish this. The method that we 
choose to use actually consists of two parts, a method for approximate eigenvalue 
analysis and a method for transforming the spectrum of an arbitrary matrix. Both of 
these methods are described in the following paragraphs. 

2.2. Approximate Eigenvalue Analysis 
The core of the eigenvalue analysis algorithm is Arnoldi’s method [5], which is a 

Krylov subspace method. We describe the method briefly. An approximate solution 
to the eigenvalue problem 

Au=lu (7) 

where A is an n x n matrix and u is an n - vector, is constructed by constraining the 
solution vector u to the Krylov subspace K, defined by 

K, = span @,,P~,...,P,,J 

p1 given starting vector 

I)k+ 1= APE k = 1, 2,..., m - 1; m < n 
(8) 
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and requiring that the residual of (7) be orthogonal to K, . This is accomplished by 
the algorithm 

p1 given starting vector 

e, = (PTPJ”*P~ 

for k= 1 to m: 

P ktlzAek- i hj,kej; hj,k = ej’ Ae, 
j=l 

h ktI,k= @kTtIPk+1)1'2 

e k+,=@ k+l,k)-lE)ktl 

next k (9) 

where the coeffkients hj,k define an upper Hessenberg matrix H,,,. The eigenvalues of 
H,,, are the desired approximate eigenvalues of A and the eigenvectors of H, define 
the corresponding approximate eigenvectors of A: 

H,,,v~=~~v~, j = l,..., m 

;j = jJ tvj)kek9 

k=l 

(10) 
j = l,..., m 

It has been shown [6] that the accuracy of the approximate spectrum obtained is 
best for the outer parts of the spectrum of A whereas the inner parts are poorly 
represented. This means that the approximate eigenvalue method must be used 
together with a spectrum transformation algorithm that is capable of moving the 
interesting parts of the spectrum outwards. 

2.3. Spectrum Transformation 
Since we are particularly interested in the asymptotic convergence of the system 

(l), we want to obtain good approximations to those eigenvalues A, of A = df/du that 
have small negative real parts. In order to accomplish this with Arnoldi’s method we 
must find a matrix transformation C = g(A) such that the interesting part of A’s 
spectrum is mapped to the outer part of C’s spectrum. The obvious choice in this case 
is the transformation C(t) = eta (where t is an arbitrary real and positive constant) 
which maps the left half of A’s eigenvalue plane to the interior of the unit circle in C’s 
eigenvalue plane. From the corresponding spectrum transformation L, = exp(tJ,) we 
see that now it is the largest eigenvalues of C(t) that we desire. For practical reasons 
we can only compute polynomial approximations of C(t) as, for example, the second- 
order accurate Gary [7] approximation (t = I At) 

C(t)xD(dt, I)= (1+&A + +4t2AZ + fdt3 A3)’ (11) 



APPROXIMATIONS TOTHE EULEREQUATIONS 95 

or the fourth-order accurate Runge-Kutta approximation 

C(t) zz D(At, I) = (I + At A + {At* A* + +At3 A3 + &At” A4)’ (12) 

which only involve powers of the matrix A. Since Arnoldi’s method applied to 
D(At, I) only requires the product D(At, I)u for arbitrary n-vectors u it is evident that 
polynomial approximations like (11) or (12) can be evaluated by Horner’s scheme 
and thus only involve the product Au for arbitrary n-vectors U. As described in 
Section 2.1 the product Au = dfldu . u can then be approximated by a difference 
scheme such as (4). Since (11) and (12) are well-known explicit time-integration 
schemes with time-step At, we know that At is limited by the condition that all eigen- 
values AtA, of the matrix AtA which satisfy Re(AfJ,) < 0 must fall within the region 
of absolute stability. For the rest of this paper we will refer to this maximum time 
step as At,,,. Although the region of absolute stability of (12) is larger than that of 
(1 I), we have chosen scheme (11) for the practical reason that it requires less 
computer storage. A simple algorithm to compute D(At, Z)u is then 

u arbitrary n-vector 

for k = 1 to 1: 

u: = u. + fAt Au 

u: = u. + fAt Au 

u: = u. + At Au 
next k 
D(&, Z)u: = u (13) 

The function of 1 in (13) is to determine the “selectivity” of the transformation. As 
1 increases, the spectrum of D(At, 1) “collapses” more and more into the point 1, = 0 
and the relative separation of the largest eigenvalues increases. This means that for 
sufficiently large 1, Arnoldi’s method can resolve the largest eigenvalues of D(At, I) 
with m < n. Since the eigenvectors of A and D(At, I) are identical it is clear that we 
can obtain the least damped eigenvectors of A with this technique. 

3. ARTIFICIAL VISCOSITY MODEL 

All discrete methods to solve the Euler equations are dissipative at the level of their 
truncation error, if not across the entire spectrum of scales then at least for the higher 
frequency range. While some difference schemes are inherently dissipative others are 
not, or not to a sufficient degree, but they can be made dissipative by adding to the 
convective difference a damping term whose magnitude lies in the range of the trun- 
cation error of the discrete approximation. This is the so-called artificial viscosity 

581/57/l-7 
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model, the rationale for which can be argued on numerical as well as physical 
grounds. Centered differences suffer from nonlinear aliasing effects, and when shock 
waves are to be captured all schemes, no matter the type, require some form of 
entropy condition to make the solution unique. But even if the flow is smooth the 
existence and uniqueness of a steady-state solution to the Euler equations cannot be 
taken for granted. In nonlinear transport there is a mechanism by which energy 
migrates from long-wavelength motion to progressively shorter and shorter scales 
until in reality it is removed from the flow by molecular viscosity. The differential 
Euler equations possess no such viscosity so that this energy can pile up in the small 
scales. But in the discrete representation it migrates to the smallest scale resolveable 
on the mesh and then returns transformed to large-scale motion via aliasing, which 
clearly is nonphysical and would appear to make a steady state unattainable. Within 
the context of the inviscid flow equations, the usual recourse to all of these 
deficiencies, albeit crude, is to attenuate waves more and more severely as their 
wavelength decreases so that none migrate out and alias back, but in such a way as 
not to alter completely the inviscid character of the solution. The idea of course is to 
model the short-wave dissipation by the real physical viscosity, and its justification is 
simply that in inviscid flow short-wave motion is of such low amplitude that whether 
removed or not it has no important effect on the overall flow character. In actual flow 
simulations this model is judged qualitatively with a view to the crispness of shock 
profiles and the thinness of vortex sheets in weak solutions, and the amount of 
entropy produced or equivalently the variation in total pressure through regions of 
smooth flow. 

A large literature is developing on the construction of such artificial viscosity 
models, but the degree and character of damping that is applied varies in detail from 
method to method, and is quite arbitrary except for classification according to its 
order of magnitude in terms of mesh spacing. What is lacking in the judgement of 
these models is a quantitative assessment of their effects, and it is precisely here that 
we think our eigenmode analysis can provide some fresh insight because it takes into 
account all of the minute details of the individual model such as nonlinear switches 
and even boundary conditions. 

We choose to introduce our dissipation model into the system at the same time 
level as the transport process. Our total difference operatorf(u) therefore consists of 
(1) the convective part f,(u) that results from discretizing the Euler equations in 
space by the centered finite-volume scheme, adding the appropriate boundary 
conditions, and then scaling it with the local time step, and (2) the dissipative part 
f,(u). The semidiscrete approximation (1) can then be written 

(14) 

The total discrete dissipative operatorf,(u) includes the boundary conditions and is 
composed of both linear and nonlinear terms according tof,(u) = g(u) + Du where D 
is a constant matrix. The nonlinear expression is designed to provide dissipation at 
discontinuities whereas the linear one is formulated to suppress spurious solutions 
(sawtooth waves) and to control the migration of energy from large to subgrid scales. 
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3.1. Nonlinear ArtzjTcial Viscosity 

Let u,,~ denote the discrete solution in thejkth cell and define the central difference 
operators 6, and 13, by 

aJuj.k = uj+ 1/2,k - Uj-1/2,k; dKUj,k= Uj,k+1/2-Uj,k-l/2* 

For all cells in the interior of the domain the nonlinear artificial viscosity is expressed 
by 

gj,k = (dJ,Ej,k(U) s.l + 6Kaj,k(U) ‘K) Uj,k (15) 

where sj,k and aj,k are coefftcients that depend on the solution field according to 
&j.k N Is:Pj,kI and aj,k - isiPj,kI where Pj,k is the pressure in cell jk. These coef- 
ficients sense nonsmooth flow and increase the filtering of large gradients so that in 
effect an entropy condition is enacted. This much is standard and is used in many 
methods. However, at cells adjacent to boundaries outside of which uj,k cannot be 
defined naturally, expression (15) must be modified, and here enters a degree of 
arbitrariness that causes the results of one method to differ markedly from another. 
We believe that the quadratic form u *Hu, where Hu = g(u) for fixed &j,k, aj,k, 

provides a useful guideline for the appropriate choice at such boundaries. The 
purpose of the total dissipative operation is to drain off energy as time increases. At 
boundaries if we simply set the corresponding sensor a or E in Eq. (15) to zero we 
fmd that the quadratic form 

NJ NK NJ-1 NK 

UTHU = 7 r uj,kHuj,k = - c 
j=l k%l 

2 Ej+l/2,k(Uj+l,k - uj,k)2 
j=l k=l 

NJ NK--I 
- 

T r aj,k+1/2(Uj,k+ 1 - uj,k)2 
,?I kti, 

is always negative and hence energy dissipates even in the boundary cells. 

3.2. Linear Artzpcial Viscosity 

We have studied two alternative models for linear artificial viscosity. The first one, 

buj,k = &(dj + 6;) uj,k (16) 

stems from Eq. (15) by taking E~,~ = aj,k = E = constant. The second alternative uses 
the fourth-difference operator 

DUj,k=-E(B: + 6i)Uj.k (17) 

at all interior cells. But at boundaries we must alter this expression, and we seek to 
do so in a way that guarantees positive dissipation in all cells. Guided again by its 
quadratic form we use no data outside the computational domain but instead incor- 
porate noncentered differences for the boundary cells together with scheme (17) at the 
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interior ones in order to obtain the total discrete linear dissipative operator D with 
the property 

NJ NK 

u=Du= C 2 u~,~Du~~ 
j=l k=l 

NJ-l NK 

=-’ C 1 CUj+I,k- 2uj,k + uj-l,k)2 
j=2 k=l 

NJ NK-1 

j=1 k=2 

which automatically ensures that the dissipation is greater than or equal to zero (for 
E > 0). The attractive feature of this artificial viscosity model, easily seen in Eq. (18), 
is that if uj,k is bilinear in j and k the total operator D acting on uj,k always returns 
zero, even at the boundaries. Compare this to the second-difference operator H that 
gives a zero result only if uj,k is a constant. The details of the construction of D will 
be presented in a forthcoming paper. 

4. FINDINGS FROM THE ANALYSIS 

In order to build confidence in and gain an appreciation for the things one can 
learn with this analysis tool we begin with a study of some common aspects of 
numerical methods whose effects are well known, the local time-step scaling and the 
addition of artificial viscosity. Then in a way not possible before we go on to cast 
new light on the problem of slow convergence to a steady-state solution, the main 
theme of the paper. 

4.1. Initial Results for Method Validation 

As a demonstration of the capabilities of our analysis method we first show the 
effect of the well-known (but not thoroughly analyzed) local time-step scaling [4] on 
the conditioning of the linearized system. Choosing a 32 x 7 mesh around a 
NACA 0012 airfoil and advancing the fully nonlinear system in time from an initial 
freestream solution at M, = 0.8, a = O”, we stop after a relatively short time (15 time 
steps) and analyze the linearized system. The solution at this instant is far from 
steady state and is dominated by waves travelling outwards from the airfoil. The 
approximate spectrum obtained for this linear system without any spectrum transfor- 
mation is shown in Fig. la, both with and without local time-step scaling. As 
mentioned in Section 2.2, the Arnoldi method needs a starting vector p, to define the 
Krylov subspace, and in this case we use random vectors. In each spectrum, the 
results for three different starting vectors are shown, and the spread of the approx- 
imate eigenvalues gives an indication of the error or uncertainty. The interesting 
feature in these spectra is the fact that the unscaled system seems to have an eigen- 
value very near the origin; i.e., it is very nearly singular. In order to confirm this near 
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Scaled 

systen 

FIG. la. Effect of local time-step scaling on spectrum of linearized system. 32 x 7 grid around 
NACA 0012 airfoil, M, = 0.8, a = 00, nonlinear dissipation added. System linearized after 15 time steps 
with free-stream initial conditions. 

Im(A) 
t 

Im(A) 

Unscaled system Scaled system 

FIG. lb. Effect of local time-step scaling on spectrum of transformed linearized system. Transfor- 
mation defined by D(At, 2) = (Z + At A + !At* A2 + aAt’ A”)’ for At = 0.9At,,,, I = 20. Otherwise the 
same case as in Fig. la. 
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FIG. 2a. Spectrum of transformed linearized system. Transformation defined by D(dt, /) = 
(Z + At A + jAt* A* + $ldt’ A’)’ for dt = 0.9At,,,, I= 50. 32 x 7 grid around NACA 0012 airfoil, 
M, = 0.8, a = 00, local time-step scaling, no dissipation. System linearized after 15 time steps with free- 
stream initial conditions. 

FIG. 2b, c. Imaginary part of eigenmodes associated with eigenvalues 1 and 2 in Fig. 2a. Eigenmodes 
visualized by plotting x,y-components of momentum as vectors emanating from corresponding mesh 
points. 

FIG. 2d. Same case as in Fig. 2a except that nonlinear dissipation is added. 

FIG. 2e, f. Real part of eigenmodes associated with eigenvalues 1 and 2 in Fig. 2d. 
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FIG. 2g. Same case as in Fig. 2a except that both non-linear and linear dissipation is added. 

FIG. 2h, i. Real part of eigenmodes associated with eigenvalues 1 and 2 in Fig. 2g. 

singularity, we compute the corresponding spectrum of the transformed matrix 
D(At, 1) described in Section 2.3 with At = 0.9At,,, and I= 20, which gives us a 
considerably improved resolution of the region around the origin of the original 
eigenvalue plane (corresponding to the region around the point 1 in the spectrum of 
D(At, I)). As can be seen in Fig. lb, the near singularity of the unscaled system is 
confirmed and the much improved conditioning due to the local time-step scaling is 
quite clear. 

Next we show the effect of the artificial viscosity on the eigenvalues and eigen- 
vectors of the linearized system. Three different cases are compared with each other; 
no dissipation added, only nonlinear dissipation added, and both nonlinear and linear 
dissipation added. In all three cases, we first advance the fully nonlinear system 15 
time steps (starting with the freestream solution) and then analyze the resulting 
linearized system. The eigenvalues and some eigenvectors of the corresponding 
D(At, /)-matrices for At = 0.9At,,, and I= 50 are shown in Figs. 2a-i. The 
eigenmodes are visualized by plotting the x and y momentum components of the 
eigenmodes as vectors emanating from the corresponding mesh points. As expected, 
the first case with no added dissipation displays several unstable modes and the two 
typical eigenmodes shown have the characteristic plus-minus pattern of spurious 
modes (Figs. 2a, b, c). By adding the nonlinear dissipation to the system, we see that 
the unstable modes disappear and the eigenmodes corresponding to the least damped 
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eigenvalues have a much more coherent structure (Figs. 2d, e, f). Finally, the addition 
of a global linear dissipation seems to damp the more irregular modes further so that 
the most persistent modes now look very smooth (Figs. 2g, h, i). The results indicate 
that the global linear dissipation is a valuable complement to the standard nonlinear 
dissipation. 

4.2. Asymptotic Convergence 

Having established the validity of the analysis procedure, we now turn to the main 
objective of this paper, the study of eigenvalues and eigenvectors of the linearized 
system near the steady state solution. As mentioned previously, it is these eigenvalues 
and eigenvectors that govern the asymptotic convergence of the semidiscrete approx- 
imation to steady state. The first question that we want to answer is what eigenvalues 
are responsible for the asymptotic convergence rate of our overall method. Since the 
spatial discretization is centered, the spectrum is dominated by complex eigenvalues 
with large imaginary parts and small real parts and it is therefore not immediately 
clear whether it is large modulus or small modulus eigenvalues that dictate the 
asymptotic convergence rate. 

As a typical example we show the spectrum obtained for a medium mesh case. 
Advancing the fully nonlinear system 500 time steps (after which the solution can be 
considered stationary) on a 64 x 14 mesh around the NACA 0012 airfoil from a 
freestream initial solution at M, = 0.8, a = O”, we linearize and compute the approx- 
imate spectrum of this linear system (Fig. 3a). Both nonlinear and linear artificial 
viscosity (of the second-difference type) is used in this case. The approximate 
spectrum shown indicates that there are some eigenvalues very near the origin of the 
eigenvalue plane and this is confirmed by the spectrum of the corresponding D(At, I)- 
matrix for At = 0.9At,,, and I = 1 (Fig. 3b). The transformed imaginary axis of the 
original eigenvalue plane is here indicated by the dashed line and it is quite clear that 
the least damped eigenvalues are to be found near the origin of the original eigenvalue 
plane. Very similar results have been obtained for both coarser (32 X 7) and liner 
(128 X 28) meshes. Furthermore, using a linear artificial viscosity of fourth-difference 
type instead of second-difference type does not affect this basic result. 

The fact that the most persistent transient modes near steady state are associated 
with complex eigenvalues of small modules makes it natural to investigate the 
structure of these eigenmodes in the hope that they are smooth enough to make a 
projection onto a coarser mesh feasible, in the spirit of the multi-grid technique for 
elliptic problems. The faster convergence on the coarser mesh would then hopefully 
increase the overall convergence rate. However, it is not only the smoothness of the 
eigenmodes on a certain fixed mesh that is important in this context. The basic 
underlying assumption made in the multi-grid concept is that all of the most 
persistent eigenmodes in a particular mesh have very similar counterparts in the next 
coarser mesh. Obviously, it the eigenmodes are very smooth this will almost certainly 
be true, since the truncation error of the discrete approximation is small in that case. 
If, however, the eigenmodes on a given mesh show a very detailed structure that 
already is at the limit of what that particular mesh can resolve, it is very likely that 
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FIG. 3a. Spectrum of linearized system on a 64 x 14 mesh around the NACA 0012 airfoil at 
M, = 0.8 and CI = 0’ with both nonlinear and linear artificial viscosity (of second-difference type) 
added. The system is linearized around a nearly steady solution (after 500 time steps). 

FIG. 3b. Spectrum of transformed linearized system for the same case as in Fig. 3a. Transformation 
defined by D(At, I) = (I + At A + iAt A2 + 4At’A’)’ for At = 0.9Atmax, 1= 1. Dashed line indicates the 
imaginary axis of the original eigenvalue plane. 

the next coarser mesh will not have very similar counterparts of these modes. 
Projecting the persistent modes down to this coarser mesh could then easily result in 
a slowdown instead of an acceleration of the overall convergence. It is therefore 
important to study the structure of the most persistent eigenmodes not only on one 
single mesh but on a sequence of meshes. 

The results that are presented in the following paragraphs have all been obtained 
for the NACA 0012 airfoil using either a coarse (32 x 7), a medium (64 x 14), or a 
line (128 x 28) mesh. For all three meshes, the fully nonlinear system has been 
advanced 500 time steps, starting from a freestream initial solution in the coarse 
mesh case and from a solution interpolated from the next coarser mesh in the medium 
and line mesh cases. The flow case chosen was M, = 0.8, Q = 0’ as before and two 
different artificial viscosity models were used. The first model is the second-difference 
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FIG. 4a. Pressure distributions for the solutions on which the linearization and eigensystem analysis 
was applied. NACA 0012 airfoil, O-type mesh, M, = 0.8, a = O”, nonlinear and linear second-difference 
type dissipation, 500 time steps on each mesh. 

FIG. 4b. Pressure distributions for the solutions on which the linearization and eigensystem analysis 
was applied. NACA 0012 airfoil, O-type mesh, M, = 0.8, a = O”, nonlinear second-difference type and 
linear fourth-difference type dissipation, 500 time steps on each mesh. 

nonlinear + second-difference linear combination and the second model is the second- 
difference nonlinear + fourth-difference linear combination (as described in 
Section 3). This resulted in six different steady solutions upon which the present 
analysis method was applied. The solutions are shown in Fig. 4 and differ mainly in 
the shock sharpness due to the different viscosity models. The approximate spectra of 
the D(At, l)-matrices for the six cases using At = 0.9At,,, and I= 50 are presented in 
Figs. 5a-c and show that the effect of the two different artificial viscosity models on 
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FIG. 5b. Same as Fig. 5a but for the 64 X 14 mesh. 



APPROXIMATIONS TO THE EULER EQUATIONS 

A3 
k 

Znd-difference type 
0 of linear dissipation 

a 

0 

/ 
.  0 0 > RI?(~) 

unit circle 

6 

RetA) 

0 0 
I/. 

4th-difference type 
of linear dissipation 

107 

FIG. 5c Same as Fig. 5a but for the 128 x 28 mesh. 
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FIG. 6a. Eigenmode corresponding to eigenvalue k, (in Fig. 5a) on 32 x 7 mesh, second-difference 
type of linear dissipation. 

FIG. 6b. Eigenmode corresponding to eigenvalue 1, (in Fig. Sb) on 64 x 14 mesh, second-difference 
type of linear dissipation. 
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FIG. 6c. Eigenmode corresponding to eigenvalue A, (in Fig. 5c) on 128 x 28 mesh, second-difference 
type of linear dissipation. 

FIG. 6d. Eigenmode corresponding to eigenvalue 1, (in Fig. 5a) on 32 X 7 mesh, fourth-difference 
type of linear dissipation. 
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type of linear dissipation. 

FIG. 6f. Eigenmode corresponding to eigenvalue 1, (in Fig. 5c) on 128 x 28 mesh, fourth-difference 
type of linear dissipation. 
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FIG. 7b. Eigenmode corresponding to eigenvalue 1, (in Fig. 5b) on 64 X 14 mesh, second-difference 
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FIG. 7c. Eigemnode corresponding to eigenvalue 1, (in Fig. 5c) on 128 x 28 mesh, second-difference 
type of linear dissipation. 
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FIG. 7d. Eigenmode corresponding to eigenvalue 1, (in Fig. 5a) on 32 X 7 mesh, fourth-difference 
type of linear dissipation. 
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FIG. 7e. Eigenmode corresponding to eigenvalue 1, (in Fig. 5b) on 64 X 14 mesh, fourth-difference 
type of linear dissipation. 
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type of linear dissipation. 
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FIG. 8d. Eigenmode corresponding to eigenvalue A, (in Fig. 5a) on 32 x 7 mesh, fourth-difference 
type of linear dissipation. 
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FIG. 9a. Eigenmode corresponding to eigenvalue L, (in Fig. 5a) on 32 x 7 mesh, second-difference 
type of linear dissipation. 
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FIG. 9c. Eigenmode corresponding to eigenvalue A, (in Fig. 5c) on 128 x 28 mesh, second-difference 
type of linear dissipation. 



124 ERIKSSON AND RIZZI 

,#‘I’ -  _ 

,  ’ -  c 

- .  -  4 

.  . - . .  4 -  -  
I  

’ \ \\\ - - . 

. Imaginary 

’ \ I \ ’ 

part 

FIG. 9d. Eigenmode corresponding to eigenvalue A, (in Fig. 5a) on 32 x 7 mesh, fourth-difference 
type of linear dissipation. 



APPROXIMATIONS TO THE EULER EQUATIONS 

r  

;--------- _ ; c - - 
Y 

__--. _ 
.  -  

c -  

.  -  

_ -  

’ , ‘, ‘, 
// 

-// ,,,,,- -- ‘/ s- - . 
/ . 4 - 

/ ‘/ 
‘/ J//d d - Real part. 

/ ‘/ . - . 
I ‘1 //A,, I -. 

1 ’ 

125 

1 
1 

FIG. 9e. Eigenmode corresponding to eigenvalue 1, (in Fig. Sb) on 64 x 14 mesh, fourth-difference 
type of linear dissipation. 
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the most persistent modes is minor. It should be mentioned that in all cases, several 
runs with the approximate eigenvalue procedure have been made with different 
random starting vectors to confirm the accuracy of the least damped eigenvalues and 
their corresponding eigenvectors. 

As the spectra in Figs. 5a-c show, one of the least damped modes has a real eigen- 
value in all six cases (A,). The structure of this eigenmode is shown in Figs. 6a-c for 
the second-difference type of linear artificial viscosity and in Figs. 6d-f for the fourth- 
difference type of linear artificial viscosity (visualized by plotting the x- and y- 
components of the momentum perturbation at each grid point.) Even though this 
mode can be identified on all three meshes, it is obvious that it is of the type 
discussed above; i.e., it is so highly structured that it is near the resolution limit of 
each mesh. The fact that this effect is more pronounced in the case of fourth- 
difference linear dissipation must be due to the sharper shock in the steady solution 
that this partcular combination of viscosity allows (see Fig. 4). A closer look at 
Fig. 6f actually gives a hint of the “meaning” of this eigenmode. The areas where the 
eigenmode has large parturbations coincide with the shock region and the stagnation 
region of the airfoil. Since the mode clearly is antisymmetric with respect to the upper 
and lower half of the physical domain, it is evident that it represents an antisym- 
metric perturbation of the shock position and an accompanying perturbation of the 
position of the stagnation point. It is perhaps not surprising that this type of shock 
motion, which affects the overall circulation around the airfoil, is among the least 
damped modes. 

Another eigenmode that has been identified on all three meshes is associated with 
eigenvalue L, in Figs. 5a-c. The corresponding eigenmodes are shown in Figs. 7a-c 
for the second-difference type of linear viscosity and in Figs. 7d, 7e for the fourth- 
difference type of linear viscosity (the fine mesh fourth-difference linear viscosity case 
is not shown because this mode was not satisfactorily resolved.) This mode is clearly 
symmetric with respect to the upper and lower half of the domain and also has its 
greatest perturbations in the shock region of the airfoil. In contrast to the first mode, 
this eigenmode can be interpreted as a symmetric perturbation of the shock position 
(and strength). It should be noted that the comparison of complex eigenvectors is 
rather difficult because the representation of such an eigenvector by a “real” part and 
an “imaginary” part is not unique. The particular representation that comes out from 
the approximate eigenvalue procedure depends on the starting vector used. Since we 
use completely random starting vectors in all cases, it is to be expected that the 
resulting representations of the computed complex eigenmodes are different. This fact 
must be kept in mind when comparing the various complex eigenmodes shown. 

The two eigenmodes shown so far are primarily connected to the shock region and 
stagnation region of the airfoil. Another type of eigenmode that seems to be 
connected to the trailing edge of the airfoil is shown in Figs. 8a-c (for the second- 
difference type of linear dissipation) and Figs. 8d,e (for the fourth-difference type of 
linear dissipation). This antisymmetric eigenmode corresponds to the eigenvalue 
marked 1, in Figs. 5a-c and is highly structured in the wake region of the airfoil. It 
seems that the sharp trailing edge of the airfoil is responsible for this shearing type of 
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transient mode which surprisingly stretches very far downstream. The widening of the 
wake region in the downstream direction that can be observed is very likely caused 
by the increased mesh cell size in that direction typical of all O-type meshes. 

A symmetric eigenmode that also displays a marked structure in the wake region is 
shown in Figs. 9a-c (for the second-difference type of linear dissipation) and Figs. 
9d,e (for the fourth-difference type of linear dissipation). This eigenmode corresponds 
to the eigenvalue marked 1, in Figs. 5a-c. 

The typical persistent eigenmodes shown so far have in common the fact that they 
are highly structured in the sense that the resolving power of each mesh is used to the 
limit. This means that the approximation of such a persistent eigenmode on a coarser 
mesh is at best a difficult and sensitive task. 

4.3. Eficiency of Linear ArtiJicial Viscosity 
The initial results discussed in Section 4.1 showed the beneficial effect of a global 

linear artificial viscosity on the smoothness of the most persistent eigenmodes on the 
coarse mesh (32 X 7). These preliminary results were obtained for a second-difference 
type of linear dissipation. The later results discussed in Section 4.2 for both the 
second-difference and the fourth-difference type of linear dissipation provide 
additional information concerning the merits of these two different viscosity models. 
For example, a comparison of the eigenmodes shown in Figs. 7b and 7e demonstrates 
the difference between the two viscosity models. It is evident from this comparison 
that the fourth-difference type of linear artificial viscosity is more effective than the 
second-difference type in eliminating saw-tooth patterns in the eigenmodes. 
Furthermore, as the steady solutions in Fig. 4 show, the fourth-difference linear 
viscosity model can be combined with the nonlinear second-difference type of 
viscosity in such a way that the shocks are reasonably sharp. 

5. CONCLUSIONS 

The fact that the most persistent eigenmodes of the linearized system are highly 
structured and therefore tax the resolving power of all meshes to the limit calls into 
question the ability of any conventional multi-grid method to work effectively on 
them. It seems likely that any such method to accelerate the convergence to steady 
state must be able to act on these modes through a projection process onto a suitable 
subspace. The difficulty lies in the construction of such a subspace without excessive 
computational effort. In the usual multi-grid method, the subspace construction is 
very simple (= the next coarser mesh) and does not require any large computational 
effort, but the resulting subspace obviously cannot resolve highly structured 
eigenmodes with sufficient detail. Other methods, for example Krylov subspace 
methods, rely on the solution process itself to generate a suitable subspace on which 
to project the persistent modes and damp them quickly. Their main disadvantage is 
that they often require a large computational effort and/or large computer memory. 
We have just read of Jameson and Baker’s very recent success with a multigrid 
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method for the Euler equations [8]. Although the convergence rates they have 
obtained in several transonic flow examples are not as rapid as those now commonly 
achieved when solving the potential equation by multigrid, they have undeniably 
demonstrated an effective improvement by multigrid in the convergence to the steady 
state of those hyperbolic equations. The success of their scheme (they say) is 
critically dependent on the temporal damping of their multistage time integration, and 
they go to some effort to optimize it to eliminate short waves. It may be that their 
most persistent modes are smoother than the ones we found for our scheme, and their 
method therefore can work effectively on these in the coarse mesh. But the only way 
to really understand it, of course, is to analyze the eigenproperties of this multigrid 
scheme with the procedure described here. 

We should also emphasize that our eigensystem analysis is a versatile tool not 
limited only to studying asymptotic convergence but proving useful as an instrument 
to compare critically various concepts of boundary conditions and artificial viscosity 
models by bringing out their different effects in the quantitative detail of their eigen- 
system decomposition. It may even tell us something about the quality of 
computational meshes, i.e., the relative strengths and weaknesses of different mesh 
densities, spacing, and topology. Furthermore, it is general in the sense that it can 
analyze any method. Given a flow-solving code all one needs to do is to create a 
solution field about which to linearize and then in a simple modular way insert into 
the analysis program the flow-solver’s subroutine that forms its flux quantities at 
every grid point in the field. The rest is done by computer. We should not, however, 
belittle the computer’s part. While the structure and basic concepts of our analysis 
program are simple and straightforward, it presents the machine with a great amount 
of computational work. For example to obtain the eigen-decomposition of the fine 
grid solution, our VAX 1 l/780 had to labor 16 hours. 
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